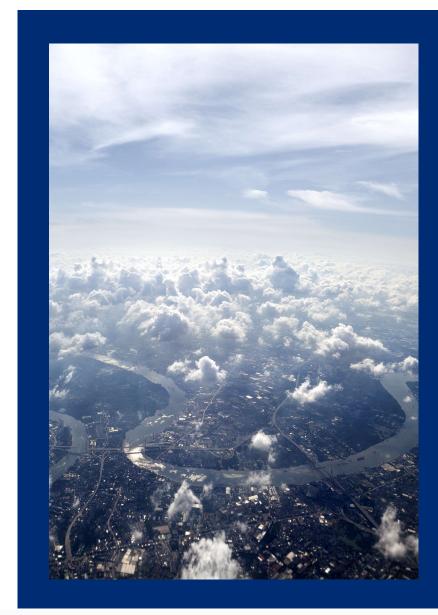
How to calculate and understand emissions


✓ Timo Roschier / 2023

Restricted

VAISALA Xweather

Emissions and Air Quality

- Local air quality is based on four components:
 - Long range transportation
 - Local emissions
 - Local weather conditions (micrometeorology)
 - Human behavior
- Many local sources:
 - Traffic (cars, busses, heavy vehicles)
 - Industry, Factories
 - Construction sites
 - Households (wood burning, coal)
 - Power plants
 - Photonucleation
 - Biogenic sources
 - Transformation into Secondary parameters
 - Resuspension

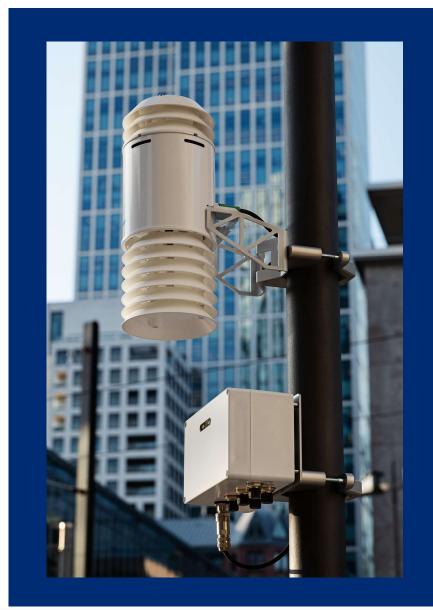


Main components

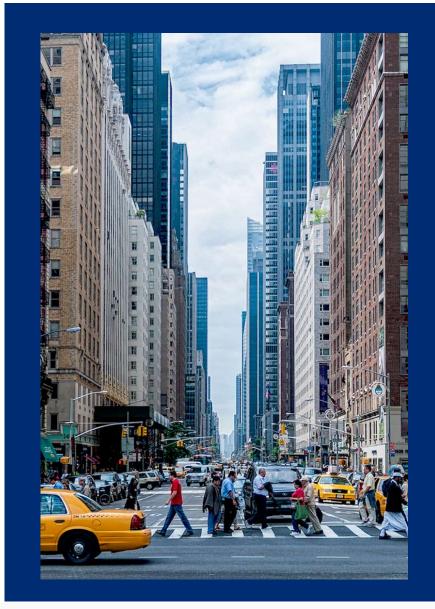
- Gases
 - NO₂, Nitrogen dioxide
 - CO, Carbon monoxide
 - O₃, Ozone
 - SO₂, Sulphur dioxide
- Particulate Matter
 - $PM_{2.5}$, Particles $\leq 2.5 \mu m$
 - PM_{10}^{-10} , Particles $\leq 10 \mu m$
 - (Coarse Particles: 2.5µm 10µm)
 - Ultrafine particles UFP: $\leq 1 \mu m$)

New parameters coming:

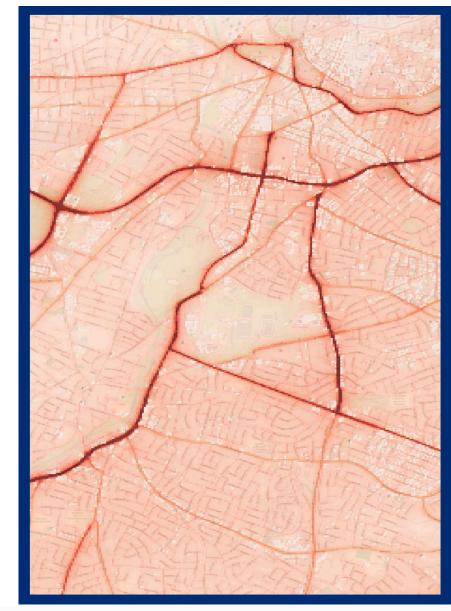
- BC, Black Carbon
- LDSA, Lung deposited Surface Area
- PNC, Particle Number Count, Particulates per cubic centimeter


Emissions and concentrations

- Emissions sources are usually very local
- Estimation of total emissions are based on measurements
 - Source of emission (traffic, construction, etc.)
 - Type of emission (single shot, short, long, ...)
 - Behavior of emission (deposition, expanding, ...)
 - (Height of the emission: surface, low height, ...)
 - Emission component (gas, particles)
 - (Atmospheric stability and mixing: plume shape)
- Measurements must be in as optimal place as possible: Traffic and city measurements aside of a road (like in the picture)
- Locally emissions can be estimated based on concentration measurements in correlation with conditions
- Measured concentration is also related to site environment: in street canyon concentrations are higher than in open area.

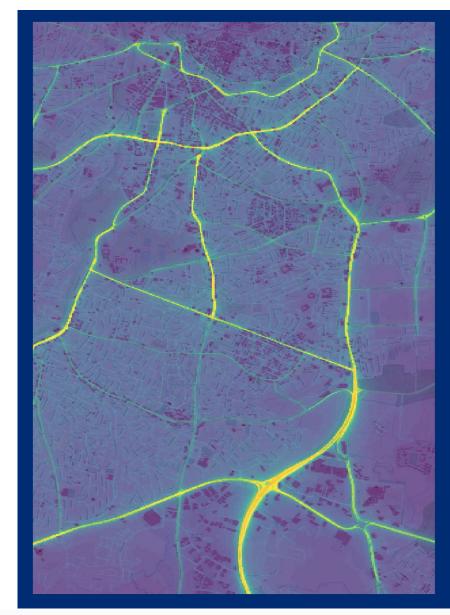

Emission scenarios

- Emissions are not constant
 - Diurnal properties: Rush hours, Quiet nights
 - Weekly properties: Workdays, weekends
 - Monthly and yearly properties: Holiday seasons, vacation season, special events
- Measured concentrations can differ from emissions: weather conditions – ventilation efficiency
 - Question of ground level ventilation
 - In inversion/stabile conditions, concentrations are higher when mixing is not happening
 - Otherwise, deep mixing making concentrations lower.


From reactive mode (Observations) to proactive mode (Forecasting)

- Measurements tell concentrations only on-site location does not what are concentrations between sensors.
- Vaisala's Hyperlocal Air Quality Forecast model has capability to create analysis of conditions within a City based on long range air quality transportation, weather forecasts and latest observations
- Forecasting is possible by iterating emission inventories and scenarios to match with observations. (Statistical methods, machine learning, trad. Dispersion modelling, etc.)
- But: Human behavior can't be fully solved. (like random changes in traffic due Olympics, Football World Cup, etc.)
- Air Quality is highly local like forecasting precipitation into street corners
- Therefore 100% accuracy cannot bee reached.
- If actions are made in a city based on forecasts, successful activities make forecast to fail.

Estimating emissions in Vaisala Hyperlocal Air Quality Forecast


- Modelling activities:
 - Human behavior as statistical scenarios
 - Traffic scenarios: workday/weekend daily variation, weekly variation, for different vehicles
 - Weather related activities from weather forecast
 - Coefficients: bad weather increase car traffic
 - Weather conditions to increase or decrease concentrations.
 - Coefficients: Power plant and household wood burning emissions are based on temperature
- Additional needs GIS data:
 - Land use maps with building height, population density maps, accurate street maps, etc.

Emission inventories and modelling

How to create reliable forecasts:

- Create environmental description for the model domain
- Create emission maps for each hour in the past and to the future
- Get background concentrations from Regional Air Quality model
- Do data fusion with weather data
- Iterative learning process: Adjust against observations and recognize changed emission levels.

Summary

- Emissions are very local: therefore, air quality measurements are more vulnerable to bad siting than weather measurements: must be located in optimal places, especially if goal is to catch emissions.
- Emissions are varying from hour to hour and day to day. Statistical approach only way to understand emissions.
- Combining emission statistics, background concentrations, weather conditions and real time observations with high resolution GIS data only way to get accurate information of Air Quality within Cities.

Vaisala.com Xweather.com

Restricted